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I.   Introduction 

Two papers by Broadhead et al. (1996, 1997) have shown that the Wiggins blind 

deconvolution algorithm (Wiggins, 1978; Waiden, 1985) can successfully be used to 

estimate a source signature in a realistic underwater acoustics application. More recently, 

Broadhead and Pflug (1998) have shown that the deconvolution algorithm developed by 

Cabrelli (1984) shows comparable results to the well-known Wiggins algorithm in the 

absence of noise, and superior results in the presence of noise. Both of the algorithms 

address the blind deconvolution problem, i.e., they attempt to recover either a source 

signal, s(t), or an impulse response function, h(t), from a received signal, r(t). The 

received signal is related to the source signal and impulse response function by the process 

of convolution 

r(T) = j s(t)h(T - t)dt , 

which is denoted more conveniently as r = s*h. The problem is said to be "blind" when 

neither the source nor the impulse response function is known. 

The Cabrelli and Wiggins algorithms are similar in that they seek a sparse representation 

for the impulse response function that can be used to achieve a source estimate, with the 

sparseness measured by different norms for the two methods. A sparse impulse response 

function is characterized by a few large amplitudes interspersed with a large number of 

small. Obviously, the success of these methods depends on how well the propagation path 

for a received signal satisfies the sparseness criteria. In many applications, ambient noise 

is a significant corrupting factor, and it is therefore important to consider how such an 

environment might affect a deconvolution algorithm, as done in Broadhead and Pflug 

(1998). 

Alternate norms in the Wiggins algorithm have been investigated briefly by Broadhead 

et al. (1997) for underwater acoustics applications and by Nandi et al. (1997) for 

nondestructive laser testing of materials. Here, alternate norms are investigated for the 



more noise-resistant Cabrelli algorithm, with results using various norms for the Wiggins 

algorithm included for completeness. 

II.   Brief Review of Methods 

A received signal, x{t), can be written as the convolution of a source signal with an 

impulse response function, x(t) = s(t)*h(t). The goal is to find a filter that, upon 

application to the received signal, produces a good estimate of the source signal or impulse 

response function, i.e., find f(t) such that the impulse response estimate, h(t), is given 

by 

ht) = f(t)*x(t) = f(t)*[s(t)*h(t)]. 

If h(t) is a good source estimate, i.e., h(t)*h~\t) = 6(t), then 

kt) = f(t)*[s(t)*h(tj\ 

h(t) * h~x (t) = f(t) * s(t) * [h(t) * /T1 (f)] 

S(t) = f(t)*s(t), 

and the source estimate is s(t) = f~l (r). 

A very brief review of the Cabrelli and Wiggins blind deconvolution methods are 

included here. Although the Wiggins method requires an iterative solution, and the 

Cabrelli method does not, computational intensities required to achieve solutions are 

similar. 

A.   Cabrelli Algorithm 

The Cabrelli algorithm uses a measure of sparseness or simplicity called the D-norm, 

defined by 

Diy) = mJy^ 

for a real-valued vector y of length m, where 



(      V2 

w\=iyi 

is the Euclidean norm, which is related to the variance. Here, y. = f\ * x is a vector of 

length m = n + l-l, x is the input signal of length n, and f; is a filter of fixed length / (to 

be determined). The blind deconvolution problem is solved by maximizing D(y) over all 

nonzero filters f(, i.e., maximizing the sparseness of the impulse response function. 

Mathematically, £>(y) is maximized by differentiating D(y) with respect to f, for each / 

and equating to zero (finding the extremal point of D(y)). Differentiation leads to the 

matrix formulation 

4T R f=x' 
VIIJII J 

where x1 =[xp xj+v ..., xj+l_^ is an/-length subset of the n-length input channel x, R 

is the Toeplitz autocorrelation matrix defined by 

R 

Vr/-i 

w-i 

l/-2 

ri  ro J 

and f; is the set of filters found by calculating f; = R'x'. Once the filters are found, they 

are convolved with the input ( y. = f .*x) to generate m = n + l-l potential impulse 

response function estimates. The / for which the D-norm of y. is maximum indicates that 

the impulse response estimate and the corresponding source estimate are h(t) = yt(t), and 



B.    Wiggins Algorithm 

As in the Cabrelli algorithm, the goal of the Wiggins algorithm is to find the filter f., 

that, upon convolution with the input signal x, produces an estimate of the impulse 

response function and source signal (h(t) = f(t)*x(t) and s(t) = f~\t)). Instead of the 

D-norm, Wiggins uses the Varimax norm, or V-norm, as a measure of sparseness, 

Differentiating V(y) with respect to the filter coefficients and equating to zero, a set of 

equations is obtained which can be rewritten in matrix form as 

R(f)-f = g(f), 

where R(f) is the Toeplitz autocorrelation matrix, and g(f) is a column vector 

proportional to y3*x. Choosing an initial filter f° = (0,...,0,1,0,...,0), an iterative 

algorithm can be generated by taking 

r+,={R(r)}_1
g(r). 

A convergence criteria on the estimated source or filter is used to terminate the iterations. 

III.   n-th Order Norms for Deconvolution 

It is shown in Broadhead and Pflug (1998) and Nandi et al. (1997) that the Wiggins 

algorithm can easily be extended to used alternate norms, i.e., the n-th order normalized 

moment instead of the fourth-order normalized moment, or V-norm. The Cabrelli 

algorithm can similarly be modified by simply substituting alternate norms for the D-norm 

in the implementation of the originally-derived formulation. Unlike the formally-derived 

extension of the Wiggins algorithm included in Broadhead and Pflug, the extension of the 

Cabrelli algorithm to n-th order norms is heuristic, based on the observation that the D- 



norm tends to echo the signal kurtosis, and that therefore norms based on moments (fourth 

and otherwise) might be useful. 

IV.   Simulated Data 

Two source signals and two impulse response functions are used to compare the 

performance of n-th order norms in the Cabrelli and Wiggins deconvolution algorithms. 

The first source (sj) is a pulse-type signal and the second source O2) is an exponentially- 

damped sinusoid, as shown in Fig. 1. The first impulse response function (Ä7) is a series 

of five positive spikes with overall skewness equal to 11.4 and kurtosis equal to 136.5. 

Since a skewed signal is by definition also nonGaussian, the first impulse response has by 

necessity both significant skew and kurtosis. The second impulse response function {hi) 

is a series of five positive and negative spikes with overall skewness equal to 0.9 and 

kurtosis equal to 81.8. That is, h.2 is fairly symmetric, but nonGaussian. The second 

impulse response is representative of multipath propagation that might occur in an 

underwater acoustic waveguide with air at the surface, for example. In contrast, the first 

might represent propagation in an ocean environment with a smooth ice cover. These two 

impulse response functions provide an opportunity to judge the relationship between the 

normalized moments of an impulse response function and the order of the norm used in the 

deconvolution algorithms. 

Each signal is convolved with each impulse response function to create a set of 

simulated received signals for input into the deconvolution algorithms. These input signals 

are shown in Fig. 2. The spikes in hi and h.2 are spaced closely enough that multipath 

arrivals of the signal, especially 52, are not spatially resolved. 
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Figure 1. The (a) pulse-type source signal, the (b) damped sinusoid source signal, and 

(c)-(d) two impulse response functions. 
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Figure 2. Input signals for the deconvolution algorithms, where sj and S2 denote the 
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V.   Algorithm Parameters and Performance Evaluation 

For the Cabrelli and Wiggins algorithms, the 3rd, 4th, 5th, and 6th order normalized 

moments are evaluated, with the normalized moments defined by 

m. = _£(y-5Q" 

for a signal sampled with N points and mean y. For the Wiggins algorithm with n = 4, 

this is essentially equivalent to the V-norm, and is referred to as such. 

Filter lengths from 1 to 50 are tested. For most of the cases tested here, at least one of 

these filter lengths is sufficient to produce a good source estimate. In practice, the filter 

length is unknown, but a set of filter lengths could routinely be tested to produce a set of 

possible solutions, which would then have to be evaluated in some systematic manner. 

To evaluate algorithm performance, a rather simple, but effective, measure is used. The 

correlation coefficient (cc) between the source estimate, s{t) and the true source, s(t) 

given by 
rnaxl^T S(0.?(T-0A?| 

cc = 

This quantity is bounded between zero and one, with a value of one indicating that the 

source estimate is equal to the true source. 

The Wiggins algorithm requires a convergence criteria for the iterative solution to the 

nonlinear system of equations. This is chosen to be either the point at which the 

correlation coefficient between the current and previous source estimate is 0.9999, or at 

100 iterations. When the goal is to estimate the impulse response function rather than the 

source signal, the criteria may more appropriately be placed on the estimated impulse 

response function. Although prewhitening is sometimes required for inversion of the 

autocorrelation matrix, it was not needed in these simulations. However, restricting the 



input and output signals to an estimate of the source signal passband was required in one 

case to achieve successful results with the Wiggins algorithm. This information would 

generally be available for high signal-to-noise ratio signals, and is not overly restrictive. 

VI.    Deconvolution Results 

This section contains the results of the Cabrelli and Wiggins algorithm performance. 

No noise is included in the simulations, although, as shown in Broadhead and Pflug 

(1998) and claimed in Cabrelli (1984), the Cabrelli method appears to be more robust to 

additive noise than the Wiggins algorithm. 

The results are shown in two forms. The first form is a figure depicting the correlation 

coefficient between the source estimate and the true source at each filter length. It is 

generally desirable that good source estimates be produced for many filter lengths, as the 

required filter length will be unknown in practice. The second form of results is a figure 

depicting the best source estimate over filter length for each method and norm. This allows 

a visual evaluation of the results and provides a guideline for determining the significance 

of the correlation coefficients. For comparison, the correlation coefficients between the 

unprocessed input signals and the true sources are given in the Table. 

Input Signal Correlation Coefficient 
s^h, 0.8834 
si*K 0.7247 

J2*Ä, 0.9466 
S2*K 0.7961 

Table. Correlation Coefficients for the Original Input Signals (Before Deconvolution) 

A.   Signal 1 

The correlation coefficients versus filter length for the Cabrelli algorithm are given in 

Fig. 3. In this and similar figures, the correlation coefficients between the unprocessed 



Signals and the true sources from the Table are depicted by horizontal dashed black lines. 

When the first impulse response is used to create a received signal for input into the 

deconvolution routine O,*/^), the D-norm, 3rd, 4th, 5th, and 6th order norms produce 

good source estimates for many filter lengths. In this case, good solutions are those with 

correlation coefficients of 0.8960 and higher, and are only slightly better than the 

correlation coefficient for the unprocessed signal, which is 0.8834. Only the 3rd moment 

norm produces a significantly improved source estimate with cc = 0.9496 (see Fig. 4), and 

only for one filter length. The Wiggins algorithm with each norm produces at least one 

source estimate that is better than the input signal, as shown by the results in Figs. 5 and 6, 

with the best estimate given by the 5th order norm, cc = 0.9506. Most of the good 

solutions are only slight improvements, however, and they occur at fewer filter lengths in 

the Wiggins results compared to the Cabrelli results. 

For the second impulse response, (sx * h^), the Cabrelli and Wiggins algorithms 

produce improved source estimates over several filter lengths. In both algorithms, the 5th 

order norm gives the best solution with cc = 0.8941 for the Cabrelli algorithm and 

cc = 0.8827 for the Wiggins algorithm. These are significant improvements over the 

unprocessed input signal correlation coefficient of 0.7247. Note, however, that the D- 

norm and the Cabrelli algorithm gives produces improved source estimates at more filter 

lengths than the V-norm and the Wiggins algorithm, and the best source estimate from the 

D-norm has cc = 0.8706, which is comparable to the best source estimate from the V-norm 

with cc = 0.8787. 

B.   Signal 2 

Results for the second test signal are shown in Figs. 7 and 8 for the Cabrelli algorithm 

and in Figs. 9 and 10 for the Wiggins algorithm. The s2*/z, input signal is very similar to 

the true source, having cc = 0.9466. Even so, both the Cabrelli and Wiggins algorithms 

10 



with all order norms produce many source estimates over the filter lengths. All order 

norms in the Cabrelli algorithm produce best source estimates with cc = 0.9971, and all the 

best source estimates are above cc = 0.9963 for the Wiggins algorithm. 

The more significant distortions in the s^*/^ inputs signal does not prevent either 

algorithm from producing excellent source estimates, but they occur over only about one- 

half of the filter lengths tested. Also, for the Cabrelli algorithm, only the D-norm, 4th and 

6th moment norms produces significantly improved source estimates, with cc = 0.9951 for 

each, compared to the input signal correlation coefficient of 0.7961. The 3rd and 5th 

moment norms produce source estimates that appear to be reversed. Since there is no 

obvious reason why this should occur in either the Cabrelli or Wiggins algorithms, these 

occurrences are assumed at this point to be arbitrary. However, we note that if these 

source estimates were reversed, the correlation coefficients would increase, from 0.7855 to 

0.9322 for the 3rd order norm and from 0.7814 to 0.9586 for the 5th order norm. 

Whether this is likely to occur for other signal types is as yet unknown. In contrast to the 

Cabrelli results, all the norms in the Wiggins algorithm produce good source estimates, 

and have correlation coefficients greater than 0.9966. 

11 
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VI.    Conclusions 

From these results, it appears that there is generally little justification for using norms 

other than the D-norm for the Cabrelli algorithm, or the V-norm for the Wiggins algorithm. 

While the results using other norms are better in some cases, meaning that the best source 

estimate is more similar to the true source, or good source estimates are produced more 

consistently with varying filter length, no predictable pattern emerges to provide guidelines 

as to when which norm will work best in most cases. One could routinely use more than 

one norm for estimation, but the number of possible solutions then increases significantly, 

and unless one has an effective method of handling the large number of solutions generated 

by multiple norms and multiple filter lengths, there may be no improvement. The 

exception is an application in which the impulse response function is known to consist of 

all positive spikes, and the source is similar to the smooth, symmetric wavelet-type source 

O,) (what constitutes "similar" has not been determined). In this case, the 3rd and 5th 

order norms appear to work better in the Cabrelli algorithm than the D-norm or even order 

norms. Note that, excepting the cases in which the source estimate appears time-reversed, 

each norm and each algorithm produced a source estimate superior to the original input 

signal. 

20 



References 

Broadhead, M. K., Pflug, L. A., and Field, R. L. (1996). "Minimum entropy filtering for 

improving nonstationary sonar signal classification," Proc. of the 8th IEEE Signal Proc. 

Workshop on Statistical Signal and Array Proc, Corfu, Greece, June 24-26, 222-225. 

Broadhead, M. K., Pflug, L. A., and Field, R. L. (1997). "Use of higher order statistics 

in source signature estimation," J. Acoust. Soc. Am., submitted. 

Broadhead, M. K., and Pflug, L. A., (1998). "Performance of Some Sparseness 

Criterion Blind Deconvolution Methods in the Presence of Noise, J. Acoust. Soc. Am., 

submitted. 

Cabrelli, C. A. (1984) Minimum entropy deconvolution and simplicity: A noniterative 

algorithm, Geophysics, vol 50, no. 3, 394-413. 

Nandi, A. K., Mampel, D., and Röscher, B. (1997). "Blind Deconvolution of Ultrasonic 

Signals in Nondestructive Testing Applications," IEEE Trans, on Signal Processing, vol 

45, no. 5, 1382-1390. 

Waiden, A. T. (1985). "Non-Gaussian reflectivity, entropy, and deconvolution," 

Geophysics, vol 50, 2862-2888. 

Wiggins, R. A. (1978). "Minimum entropy deconvolution," Geoexploration, 16, 21-35. 

Acknowledgments 

This work was funded by the Office of Naval Research and the Naval Research 

Laboratory. 

21 


